THOUSANDS OF FREE BLOGGER TEMPLATES

Senin, 18 Oktober 2010

sejaRah passkiibra

Paskibraka adalah singkatan dari Pasukan Pengibar Bendera Pusaka dengan tugas utamanya mengibarkan duplikat bendera pusaka dalam upacara peringatan proklamasi kemerdekaan Indonesia di Istana Negara. Anggotanya berasal dari pelajar Sekolah Lanjutan Tingkat Atas kelas 1 atau 2. Penyeleksian anggotanya biasanya dilakukan sekitar bulan April untuk persiapan pengibaran pada 17 Agustus di beberapa tingkat wilayah, provinsi, dan nasional.

 Lambang

Lambang dari organisasi paskibra adalah bunga teratai

 Sejarah

Gagasan Paskibraka lahir pada tahun 1946, pada saat ibukota Indonesia dipindahkan ke Yogyakarta. Memperingati HUT Proklamasi Kemerdekaan RI yang ke-1, Presiden Soekarno memerintahkan salah satu ajudannya, Mayor (Laut) Husein Mutahar, untuk menyiapkan pengibaran bendera pusaka di halaman Istana Gedung Agung Yogyakarta. Pada saat itulah, di benak Mutahar terlintas suatu gagasan bahwa sebaiknya pengibaran bendera pusaka dilakukan oleh para pemuda dari seluruh penjuru Tanah Air, karena mereka adalah generasi penerus perjuangan bangsa.
Tetapi, karena gagasan itu tidak mungkin terlaksana, maka Mutahar hanya bisa menghadirkan lima orang pemuda (3 putra dan 2 putri) yang berasal dari berbagai daerah dan kebertulan sedang berada di Yogyakarta. Lima orang tersebut melambangkan Pancasila. Sejak itu, sampai tahun 1949, pengibaran bendera di Yogyakarta tetap dilaksanakan dengan cara yang sama.
Ketika Ibukota dikembalikan ke Jakarta pada tahun 1950, Mutahar tidak lagi menangani pengibaran bendera pusaka. Pengibaran bendera pusaka pada setiap 17 Agustus di Istana Merdeka dilaksanakan oleh Rumah Tangga Kepresidenan sampai tahun 1966. Selama periode itu, para pengibar bendera diambil dari para pelajar dan mahasiswa yang ada di Jakarta.
Tahun 1967, Husein Mutahar dipanggil presiden saat itu, Soekarno, untuk menangani lagi masalah pengibaran bendera pusaka. Dengan ide dasar dari pelaksanaan tahun 1946 di Yogyakarta, beliau kemudian mengembangkan lagi formasi pengibaran menjadi 3 kelompok yang dinamai sesuai jumlah anggotanya, yaitu:
  • Kelompok 17 / pengiring (pemandu),
  • Kelompok 8 / pembawa (inti),
  • Kelompok 45 / pengawal.
Jumlah tersebut merupakan simbol dari tanggal Proklamasi Kemerdekaan RI, 17 Agustus 1945 (17-8-45). Pada waktu itu dengan situasi kondisi yang ada, Mutahar hanya melibatkan putra daerah yang ada di Jakarta dan menjadi anggota Pandu/Pramuka untuk melaksanakan tugas pengibaran bendera pusaka. Rencana semula, untuk kelompok 45 (pengawal) akan terdiri dari para mahasiswa AKABRI (Generasi Muda ABRI) namun tidak dapat dilaksanakan. Usul lain menggunakan anggota pasukan khusus ABRI (seperti RPKAD, PGT, marinir, dan Brimob) juga tidak mudah. Akhirnya diambil dari Pasukan Pengawal Presiden (PASWALPRES) yang mudah dihubungi karena mereka bertugas di Istana Negara Jakarta.
Mulai tanggal 17 Agustus 1968, petugas pengibar bendera pusaka adalah para pemuda utusan provinsi. Tetapi karena belum seluruh provinsi mengirimkan utusan sehingga masih harus ditambah oleh ex-anggota pasukan tahun 1967.
Pada tanggal 5 Agustus 1969, di Istana Negara Jakarta berlangsung upacara penyerahan duplikat Bendera Pusaka Merah Putih dan reproduksi Naskah Proklamasi oleh Suharto kepada Gubernur/Kepala Daerah Tingkat I seluruh Indonesia. Bendera duplikat (yang terdiri dari 6 carik kain) mulai dikibarkan menggantikan Bendera Pusaka pada peringatan Hari Ulang Tahun Proklamasi Kemerdekaan RI tanggal 17 Agustus 1969 di Istana Merdeka Jakarta, sedangkan Bendera Pusaka bertugas mengantar dan menjemput bendera duplikat yang dikibar/diturunkan. Mulai tahun 1969 itu, anggota pengibar bendera pusaka adalah para remaja siswa SLTA se-tanah air Indonesia yang merupakan utusan dari seluruh provinsi di Indonesia, dan tiap provinsi diwakili oleh sepasang remaja.
Istilah yang digunakan dari tahun 1967 sampai tahun 1972 masih "Pasukan Pengerek Bendera Pusaka". Baru pada tahun 1973, Idik Sulaeman melontarkan suatu nama untuk Pengibar Bendera Pusaka dengan sebutan PASKIBRAKA. PAS berasal dari PASukan, KIB berasal dari KIBar mengandung pengertian pengibar, RA berarti bendeRA dan KA berarti PusaKA. Mulai saat itu, anggota pengibar bendera pusaka disebut Paskibraka<b:if cond='data:blog.pageType != "item"'>
<a expr:href='data:post.url'> Read More..</a>
</b:if>

ORGAN PADA TUMBUHAN ( DAUN )

*
o

Morfologi

Bentuk daun sangat beragam, namun biasanya berupa helaian, bisa tipis atau tebal. Gambaran dua dimensi daun digunakan sebagai pembeda bagi bentuk-bentuk daun. Bentuk dasar daun membulat, dengan variasi cuping menjari atau menjadi elips dan memanjang. Bentuk ekstremnya bisa meruncing panjang.

Daun juga bisa bermodifikasi menjadi duri (misalnya pada kaktus), dan berakibat daun kehilangan fungsinya sebagai organ fotosintetik. Daun tumbuhan sukulen atau xerofit juga dapat mengalami peralihan fungsi menjadi organ penyimpan air.
Daun segar (kiri) dan tua. Daun tua telah kehilangan klorofil sebagai bagian dari penuaan.

Warna hijau pada daun berasal dari kandungan klorofil pada daun. Klorofil adalah senyawa pigmen yang berperan dalam menyeleksi panjang gelombang cahaya yang energinya diambil dalam fotosintesis. Sebenarnya daun juga memiliki pigmen lain, misalnya karoten (berwarna jingga), xantofil (berwarna kuning), dan antosianin (berwarna merah, biru, atau ungu, tergantung derajat keasaman). Daun tua kehilangan klorofil sehingga warnanya berubah menjadi kuning atau merah (dapat dilihat dengan jelas pada daun yang gugur).
Fungsi

* Tempat terjadinya fotosintesis.

pada tumbuhan dikotil, terjadinya fotosintesis di jaringan parenkim palisade. sedangkan pada tumbuhan monokotil, fotosintesis terjadi pada jaringan spons.

* Sebagai organ pernapasan.

Di daun terdapat stomata yang befungsi sebagai organ respirasi (lihat keterangan di bawah pada Anatomi Daun).

* Tempat terjadinya transpirasi.
* Tempat terjadinya gutasi.
* Alat perkembangbiakkan vegetatif.

Misalnya pada tanaman cocor bebek (tunas daun).

Anatomi

Diagram anatomi bagian dalam daun.

Epidermis

Jaringan ini terbagi menjadi epidermis atas dan epidermis bawah, berfungsi melindungi jaringan yang terdapat di bawahnya.
Jaringan mesofil

Jaringan Tiang, jaringan ini mengandung banyak kloroplas yang berfungsi dalam proses pembuatan makanan
Jaringan bunga karang

Disebut juga jaringan spons karena lebih berongga bila dibandingkan dengan jaringan palisade, berfungsi sebagai tempat menyimpan cadangan makanan.z
Berkas pembuluh angkut

Terdiri dari xilem atau pembuluh kayu dan floem atau pembuluh tapis, pada tumbuhan dikotil keduanya dipisahkan oleh kambium.

Pada akar, Xilem berfungsi mengangkut air dan mineral menuju daun. Pada batang, xilem berfungsi sebagai sponsor penegak tumbuhan

Floem berfungsi mentransfor hasil fotosintesis dari daun ke seluruh bagian tumbuhan
Stomata

Stoma (jamak: stomata) berfungsi sebagai organ respirasi. Stoma mengambil CO2 dari udara untuk dijadikan bahan fotosintesis, mengeluarkan O2 sebagai hasil fotosintesis. Stoma ibarat hidung kita dimana stoma mengambil CO2 dari udara dan mengeluarkan O2, sedangkan hidung mengambil O2 dan mengeluarkan CO2. Stoma terletak di epidermis bawah. Selain stoma, tumbuhan tingkat tinggi juga bernafas melalui lentisel yang terletak pada batang

Selamat Datang di BLog sederhanaku

Selasa, 05 Oktober 2010

PELUANG ( Matematiika )

Peluang
1. Faktorial
4! = 4 x 3 x 2 x 1 = 24
2. Permutasi
Contoh: Berapa banyak macam susunan huruf pada kata “DADU”?
4P4 = 4! = 4 x 3 x 2 x 1 = 24
3. Kombinasi
Contoh: Ada berapa cara 2 orang dipilih dari 10 orang untuk bergabung dalam lomba?
Jawab:
10C2 = 10! = 45
2! x 8!
4. Peluang
Contoh: Berapa peluang kejadian muncul bilangan genap pada pelemparan dadu?
Jawab:
P(A) = n(A) = 3 = ½
N(S)   6
5. Peluang Gabungan Dua Kejadian Saling Lepas
Contoh: Dua buah dadu dilempar bersamaan sebanyak 1 kali. Tentukan peluang kejadian munculnya jumlah angka kedua dadu itu sama dengan 4 atau 5.
Jawab:
Kejadian munculnya jumlah angka kedua dadu = 4 (1,3; 2,2; 3,1)
P(A) = 3/36 = 1/12
Kejadian munculnya jumlah angka kedua dadu = 5 (1,4; 2,3; 3,2; 4,1)
P(B) = 4/36 = 1/9
Jadi P(A È B) = P(A) + P(B) = 3/36 + 4/36 = 7/36
6. Peluang Kejadian yang Saling Bebas
Contoh: Dua buah dadu dilempar sekali, tentukan peluang munculnya mata dadu 2 pada dadu pertama dan mata dadu 6 pada mata dadu kedua!
P(A) = P(2) = 1/6
P(B) = P(6) = 1/6
P(A Ç B) = P(A) x P(B) = 1/6 x 1/6 = 1/36

jariingan

Jaringan tumbuhan – Jaringan adalah sekumpulan sel yang memiliki bentuk dan fungsi sama. Jaringan pada tumbuhan dan hewan berbeda. Kali ini kita pelajari jaringan tumbuhan terlebih dahulu. Jenis-jenis jaringan pada tumbuhan antara lain: Jaringan meristem, jaringan parenkim, jaringan epidermis, jaringan klorenkim, jaringan kolenkim, jaringan sklerenkim, jaringan xylem,dan jaringan floem.

a. Jaringan Meristem

Jaringan meristem adalah jaringan yang sel-selnya selalu membelah (mitosis) serta belum berdifferensiasi. Ada beberapa macam jaringan meristem, antara lain :
- Titik tumbuh, terdapat pada ujung batang, meristem ini menyebabkan tumbuh memanjang atau disebut juga tumbuh primer. Terdapat dua teori yang menjelaskan pertumbuhan ini. Yang pertama adalah teori histogen dari Hanstein yang menyatakan titik tumbuh terdiri dari dermatogens yang menjadi epidermis, periblem yang menjadi korteks, dan plerom yang akan menjadi silinder pusat. Teori kedua adalah teori Tunica-Corpus dari Schmidt yang menyatakan bahwa titik tumbuh terdiri atas Tunica yang fungsinya memperluas titik tumbuh, serta Corpus yang berdifferensiasi menjadi jaringan-jaringan.
- Perisikel (perikambium) merupakan tempat tumbuhnya cabang-cabang akar. Letaknya antara korteks dan silinder pusat.
- Kambium fasikuler (kambium primer). Kambium ini terdapat di antara Xilem dan floem pada tumbuhan dikotil dan Gymnospermae. Khusus pada tumbuhan monokotil, kambium hanya terdapat pada batang tumbuhan Agave dan Pleomele. Kambium fasikuler kea rah dalam membentuk Xilem dank e arah luar membentuk floem, sementara ke samping membentuk jaringan meristematis yang berfungsi memperluas kambium. Pertumbuhan oleh kambium ini disebut pertumbuhan sekunder
- Kambium sekunder (kambium gabus/ kambium felogen), kambium ini terdapat padapermukaan batang atau akar yang pecah akibat pertumbuhan sekunder. Kambium gabus kea rah luar membentu sel gabus pengganti epidermis dank e arah dalam membentuk sel feloderm hidup. Kambium inilah yang menyebabkan terjadinya lingkar tahun pada tumbuhan.
- Parenkim yang meristematis terdapat pada beberapa batang pohon palm raja.
b. Jaringan Parenkim
Jaringan parenkim adalah jaringan yang selnya berdinding selulosa tipis yang berfungsi sebagai pengisi bagian tubuh tumbuhan. Ciri-ciri khas jaringan ini adalah sel-selnya berukuran besar, berdinding tipis dan susunannya renggang sehingga banyak ruang antar sel dan vakuolanya besar. Jaringan ini terletak Pada korteks dan empulur batang dan akar, pada buah, serta di antara Xilem dan floem. Adapun fungsi jaringan parenkim antara lain :
- Sebagai pengisi tubuh
- Tempat menyimpan cadangan makanan
- Parenkim yang berklorofil berfungsi sebagai tempat fotosintesis
Jaringan ini dibagi dua, yang pertama adalah parenkim yang berada di daun, disebut mesofil. Mesofil yang berbentuk panjang disebut palisade, sedangkan yang berbentuk bulat disebut jaringan spons. Jenis jaringan parenkim yang kedua adalah jaringan parenkim berklorofil yang letaknya tidak di daun, disebut klorenkim.
c. jaringan epidermis
Jaringan epidermis adalah jaringan yang terdapat pada tubuh sebelah luar. Jaringan epidermis tersusun atas sel-sel hidup berbentuk pipih selapis yang berderet rapat tanpa ruang antar sel. Jaringan epidermis umumnya tidak berklorofil, kecuali pada epidermis tumbuhan Bryophita dan Pterydophyta serta sekitar stomata. Fungsi jaringan epidermis antara lain :
- Pelindung, tidak dapat ditembus air dari luar, kecuali akar yang muda.
- Peresap air dan mineral pada akar yang muda. Oleh karena itu akar-akar yang muda epidermisnya diperluas dengan tonjolan-tonjolan yang disebut bulu akar.
- Untuk penguapan air yang berlebiha. Bisa melalui evaporasi atau gutasi
- Tempat difusi O2 dan CO2 sewaktu respirasi, terjadi pada epidermis yang permukaannya bergabus
Epidermis memiliki beberapa struktur khas sebagai berikut :
- Stomata (mulut daun), yaitu lubang pada lapisan epidermis daun. Sekitar stomata terdapat sel yang berklorofil disebut sel penutup. Stomata berfungsi sebagai tempat masuknya CO2 dan keluarnya O2 sewaktu berfotosintesis. Selai itu stomata juga berfungsi untuk penguapan air
- Trichoma, yaitu rambut-rambut yang tumbuh pada permukaan luar dari epidermis daun dan batang. Berfungsi untuk menahan penguapan air.
- Bulu-bulu akar, yaitu rambut-rambut yang tumbuh pada permukaan akar yang dapat diresapi oleh larutan garam-garam tanah.
d. Jaringan Kolenkim
jaringan kolenkim adalah jaringan yang terdiri atas sel-sel hidup yang memiliki selulosa tebal, penebalan yang utama terjadi pada sudut-sudutnya. Jaringan ini biasanya berkelompok membentu untaian atau silinder. Jaringan ini terletak pada bagian terluar batang dan urat daun. Fungsinya sebagai penyokong dan memperkuat organ.
e. Jaringan Sklerenkim
Jaringan sklerenkim terdiri atas sel-sel yang bersifat mati dan seluruh bagian dinding selnya mengalami penebalan. Letaknya adalah di bagian korteks, perisikel, serta di antara xylem dan floem. Jaringan sklerenkim pada bagian keras biji dan buah berupa sklereida
Sklerenkim ada dua jenis, yaitu berbentuk fiber (serat) misalnya rami, dan slereida pada kulit kacang atau kulit biji. Fungsi jaringan sklerenkim adalah sebagai alat penyokong dan pelindung.
f. Jaringan Xilem
Jaringan Xilem terdapat pada bagian kayu tanaman . fungsinya menyalurkan air dari akar menuju bagian atas tanaman. Xilem terdiri atas unsur-unsur sebagai berikut,
- Unsur trakeal terdiri dari trakea yang sel-selnya berbentuk tabung dan trakeid yang sel-selnya lancip panjang, dinding selnya berlubang-lubang
- Serabut Xilem yang terdiri dari sel-sel panjang dan ujungnya meruncing
- Parenkim kayu yang berisi berbagai zat seperti cadangan makanan, tannin dan Kristal
g. Jaringan Floem
Jaringan Floem terdapat bagian kulit kayu berfungsi menyalurkan zat makanan hasil fotosintesis ke seluruh bagian tumbuhan. Floem terdiri atas unsur-unsur sebagai berikut,
- Buluh tapis berbentuk tabung dengan bagian ujung berlubang-lubang
- Sel pengiring berbentuk silinder-silinder dan lebih besar daripada sel-sel tapis serta plasmanya pekat
- Serabut floem, bentuknya panjang dengan ujung-ujung berhimpit dan dindingnya tebal
- Parenkim floem, selnya hidup memiliki diding primer dengan lubang kecil yang disebut noktah halaman. Parenkim floem berisi tepung, dammar, atau Kristal.

LAJU REAKSI ( KIMIA )

Laju reaksi atau kecepatan reaksi menyatakan banyaknya reaksi yang berlangsung per satuan waktu. Laju reaksi menyatakan konsentrasi zat terlarut dalam reaksi yang dihasilkan tiap detik reaksi.

Faktor yang mempengaruhi laju reaksi

Laju reaksi dipengaruhi oleh beberapa faktor, antara lain:

 Luas permukaan sentuh

Luas permukaan sentuh memiliki peranan yang sangat penting dalam banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil luas permukaan bidang sentuh, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil. Karakteristik kepingan yang direaksikan juga turut berpengaruh, yaitu semakin halus kepingan itu, maka semakin cepat waktu yang dibutuhkan untuk bereaksi ; sedangkan semakin kasar kepingan itu, maka semakin lama waktu yang dibutuhkan untuk bereaksi.

 Suhu

Suhu juga turut berperan dalam mempengaruhi laju reaksi. Apabila suhu pada suatu rekasi yang berlangusng dinaikkan, maka menyebabkan partikel semakin aktif bergerak, sehingga tumbukan yang terjadi semakin sering, menyebabkan laju reaksi semakin besar. Sebaliknya, apabila suhu diturunkan, maka partikel semakin tak aktif, sehingga laju reaksi semakin kecil.

 Katalis

Katalis adalah suatu zat yang mempercepat laju reaksi kimia pada suhu tertentu, tanpa mengalami perubahan atau terpakai oleh reaksi itu sendiri. Suatu katalis berperan dalam reaksi tapi bukan sebagai pereaksi ataupun produk. Katalis memungkinkan reaksi berlangsung lebih cepat atau memungkinkan reaksi pada suhu lebih rendah akibat perubahan yang dipicunya terhadap pereaksi. Katalis menyediakan suatu jalur pilihan dengan energi aktivasi yang lebih rendah. Katalis mengurangi energi yang dibutuhkan untuk berlangsungnya reaksi.
Katalis dapat dibedakan ke dalam dua golongan utama: katalis homogen dan katalis heterogen. Katalis heterogen adalah katalis yang ada dalam fase berbeda dengan pereaksi dalam reaksi yang dikatalisinya, sedangkan katalis homogen berada dalam fase yang sama. Satu contoh sederhana untuk katalisis heterogen yaitu bahwa katalis menyediakan suatu permukaan di mana pereaksi-pereaksi (atau substrat) untuk sementara terjerat. Ikatan dalam substrat-substrat menjadi lemah sedemikian sehingga memadai terbentuknya produk baru. Ikatan atara produk dan katalis lebih lemah, sehingga akhirnya terlepas.
Katalis homogen umumnya bereaksi dengan satu atau lebih pereaksi untuk membentuk suatu perantarakimia yang selanjutnya bereaksi membentuk produk akhir reaksi, dalam suatu proses yang memulihkan katalisnya. Berikut ini merupakan skema umum reaksi katalitik, di mana C melambangkan katalisnya:

A + C → AC (1) 
         B + AC → AB + C (2) 

Meskipun katalis (C) termakan oleh reaksi 1, namun selanjutnya dihasilkan kembali oleh reaksi 2, sehingga untuk reaksi keseluruhannya menjadi :

A + B + C → AB + C 

Beberapa katalis yang pernah dikembangkan antara lain berupa katalis Ziegler-Natta yang digunakan untuk produksi masal polietilen dan polipropilen. Reaksi katalitis yang paling dikenal adalah proses Haber, yaitu sintesis amoniak menggunakan besi biasa sebagai katalis. Konverter katalitik yang dapat menghancurkan produk emisi kendaraan yang paling sulit diatasi, terbuat dari platina dan rodium.

 Molaritas

Molaritas adalah banyaknya mol zat terlarut tiap satuan volum zat pelarut. Hubungannya dengan laju reaksi adalah bahwa semakin besar molaritas suatu zat, maka semakin cepat suatu reaksi berlangsung. Dengan demikian pada molaritas yang rendah suatu reaksi akan berjalan lebih lambat daripada molaritas yang tinggi. Hubungan antara laju reaksi dengan molaritas adalah:
V = k [A]m [B]n
dengan:
  • V = Laju reaksi
  • k = Konstanta kecepatan reaksi
  • m = Orde reaksi zat A
  • n = Orde reaksi zat B

Konsentrasi

Karena persamaan laju reaksi didefinisikan dalam bentuk konsentrsi reaktan maka dengan naiknya konsentrasi maka naik pula kecepatan reaksinya. Artinya semakin tinggi konsentrasi maka semakin banyak molekul reaktan yang tersedia denngan demikian kemungkinan bertumbukan akan semakin banyak juga sehingga kecepatan reaksi meningkat.

KIMIA

Ikatan kimia

Ikatan kimia adalah sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Penjelasan mengenai gaya tarik menarik ini sangatlah rumit dan dijelaskan oleh elektrodinamika kuantum. Dalam prakteknya, para kimiawan biasanya bergantung pada teori kuantum atau penjelasan kualitatif yang kurang kaku (namun lebih mudah untuk dijelaskan) dalam menjelaskan ikatan kimia. Secara umum, ikatan kimia yang kuat diasosiasikan dengan transfer elektron antara dua atom yang berpartisipasi. Ikatan kimia menjaga molekul-molekul, kristal, dan gas-gas diatomik untuk tetap bersama. Selain itu ikatan kimia juga menentukan struktur suatu zat.
Kekuatan ikatan-ikatan kimia sangatlah bervariasi. Pada umumnya, ikatan kovalen dan ikatan ion dianggap sebagai ikatan "kuat", sedangkan ikatan hidrogen dan ikatan van der Waals dianggap sebagai ikatan "lemah". Hal yang perlu diperhatikan adalah bahwa ikatan "lemah" yang paling kuat dapat lebih kuat daripada ikatan "kuat" yang paling lemah

Minggu, 03 Oktober 2010

sel ( biologi )

Sel merupakan unit organisasi terkecil yang menjadi dasar kehidupan dalam arti biologis. Semua fungsi kehidupan diatur dan berlangsung di dalam sel. Karena itulah, sel dapat berfungsi secara autonom asalkan seluruh kebutuhan hidupnya terpenuhi.
Semua organisme selular terbagi ke dalam dua golongan besar berdasarkan arsitektur basal dari selnya, yaitu organisme prokariota dan organisme eukariota.[1]
Organisme prokariota tidak memiliki inti sel dan mempunyai organisasi internal sel yang relatif lebih sederhana. Prokariota terbagi menjadi dua kelompok yang besar: eubakteria yang meliputi hampir seluruh jenis bakteri, dan archaea, kelompok prokariota yang sangat mirip dengan bakteri dan berkembang-biak di lingkungan yang ekstrim seperti sumber air panas yang bersifat asam atau air yang mengandung kadar garam yang sangat tinggi. Genom prokariota terdiri dari kromosom tunggal yang melingkar, tanpa organisasi DNA.
Organisme eukariota memiliki organisasi intraselular yang jauh lebih kompleks, antara lain dengan membran internal, organel yang memiliki membran tersendiri seperti inti sel dan sitoskeleton yang sangat terstruktur. Sel eukariota memiliki beberapa kromosom linear di dalam nuklei, di dalamnya terdapat sederet molekul DNA yang sangat panjang yang terbagi dalam paket-paket yang dipisahkan oleh histon dan protein yang lain.
Jika panjang DNA diberi notasi C dan jumlah kromosom dalam genom diberi notasi n, maka notasi 2nC menunjukkan genom sel diploid, 1nC menunjukkan genom sel haploid, 3nC menunjukkan genom sel triploid, 4nC menunjukkan genom sel tetraploid. Pada manusia, C = 3,5 × 10-12 g, dengan n = 23, sehingga genom manusia dirumuskan menjadi 2 x 23 x 3,5 × 10-12, karena sel eukariota manusia memiliki genom diploid.
Sejenis sel diploid yaitu sel nutfah dapat terdiferensiasi menjadi sel gamet haploid. Genom sel gamet pada manusia memiliki 23 kromosom, 22 diantaranya merupakan otosom, sisanya merupakan kromosom genital. Pada oosit, kromosom genital senantiasa memiliki notasi X, sedangkan pada spermatosit, kromosom dapat berupa X maupun Y. Setelah terjadi fertilisasi antara kedua sel gamet yang berbeda kromosom genitalnya, terbentuklah sebuah zigot diploid. Notasi genom yang digunakan untuk zigot adalah 46,XX atau 46,XY.
Pada umumnya sel somatik merupakan sel diploid, namun terdapat beberapa perkecualian, antara lain: sel darah merah dan keratinosit memiliki genom nuliploid. Hepatosit bergenom tetraploid 4nC, sedang megakariosit pada sumsum tulang belakang memiliki genom poliploid hingga 8nC, 16nC atau 32nC dan dapat melakukan proliferasi hingga menghasilkan ribuan sel nuliploid. Banyaknya ploidi pada sel terjadi sebagai akibat dari replikasi DNA yang tidak disertai pembelahan sel, yang lazim disebut sebagai endomitosis